User Tools

Site Tools


Simple Command Expansion

When a simple command is executed, the shell performs the following expansions, assignments, and redirections, from left to right.

The words that the parser has marked as variable assignments (those preceding the command name) and redirections are saved for later processing.

The words that are not variable assignments or redirections are expanded . If any words remain after expansion, the first word is taken to be the name of the command and the remaining words are the arguments.

Redirections are performed as described above

The text after the `=' in each variable assignment undergoes tilde expansion, parameter expansion, command substitution, arithmetic expansion, and quote removal before being assigned to the variable.

If no command name results, the variable assignments affect the current shell environment. Otherwise, the variables are added to the environment of the executed command and do not affect the current shell environment. If any of the assignments attempts to assign a value to a readonly variable, an error occurs, and the command exits with a non-zero status.

If no command name results, redirections are performed, but do not affect the current shell environment. A redirection error causes the command to exit with a non-zero status.

If there is a command name left after expansion, execution proceeds as described below. Otherwise, the command exits. If one of the expansions contained a command substitution, the exit status of the command is the exit status of the last command substitution performed. If there were no command substitutions, the command exits with a status of zero.

Command Search and Execution

After a command has been split into words, if it results in a simple command and an optional list of arguments, the following actions are taken.

If the command name contains no slashes, the shell attempts to locate it.

If the name does not match a function, the shell searches for it in the list of shell builtins. If a match is found, that builtin is invoked.

If the name is neither a shell function nor a builtin, and contains no slashes, Bash searches each element of $PATH for a directory containing an executable file by that name. Bash uses a hash table to remember the full pathnames of executable files to avoid multiple PATH searches . A full search of the directories in $PATH is performed only if the command is not found in the hash table. If the search is unsuccessful, the shell prints an error message and returns an exit status of 127.

If the search is successful, or if the command name contains one or more slashes, the shell executes the named program in a separate execution environment. Argument 0 is set to the name given, and the remaining arguments to the command are set to the arguments supplied, if any.

If this execution fails because the file is not in executable format, and the file is not a directory, it is assumed to be a shell script and the shell executes it as described in our next chapter.

If the command was not begun asynchronously, the shell waits for the command to complete and collects its exit status.

Command Execution Environment

The shell has an execution environment, which consists of the following:

- open files inherited by the shell at invocation, as modified by redirections supplied to the exec builtin

- the current working directory as set by cd, pushd, or popd, or inherited by the shell at invocation

- the file creation mode mask as set by umask or inherited from the shell's parent

- current traps set by trap

- shell parameters that are set by variable assignment or with set or inherited from the shell's parent in the environment

- shell functions defined during execution or inherited from the shell's parent in the environment

- options enabled at invocation (either by default or with command-line arguments) or by set

- options enabled by shopt

- shell aliases defined with alias

- various process IDs, including those of background jobs, the value of $$, and the value of $PPID

When a simple command other than a builtin or shell function is to be executed, it is invoked in a separate execution environment that consists of the following. Unless otherwise noted, the values are inherited from the shell.

- the shell's open files, plus any modifications and additions specified by redirections to the command

- the current working directory

- the file creation mode mask

- shell variables marked for export, along with variables exported for the command, passed in the environment

- traps caught by the shell are reset to the values inherited from the shell's parent, and traps ignored by the shell are ignored

A command invoked in this separate environment cannot affect the shell's execution environment.

Command substitution and asynchronous commands are invoked in a subshell environment that is a duplicate of the shell environment, except that traps caught by the shell are reset to the values that the shell inherited from its parent at invocation. Builtin commands that are invoked as part of a pipeline are also executed in a subshell environment. Changes made to the subshell environment cannot affect the shell's execution environment.

If a command is followed by a `&' and job control is not active, the default standard input for the command is the empty file `/dev/null'. Otherwise, the invoked command inherits the file descriptors of the calling shell as modified by redirections.


When a program is invoked it is given an array of strings called the environment. This is a list of name-value pairs, of the form name=value.

Bash provides several ways to manipulate the environment. On invocation, the shell scans its own environment and creates a parameter for each name found, automatically marking it for export to child processes. Executed commands inherit the environment. The export and `declare -x' commands allow parameters and functions to be added to and deleted from the environment. If the value of a parameter in the environment is modified, the new value becomes part of the environment, replacing the old. The environment inherited by any executed command consists of the shell's initial environment, whose values may be modified in the shell, less any pairs removed by the unset and `export -n' commands, plus any additions via the export and `declare -x' commands.

The environment for any simple command or function may be augmented temporarily by prefixing it with parameter assignments. These assignment statements affect only the environment seen by that command.

If the `-k' option is set, then all parameter assignments are placed in the environment for a command, not just those that precede the command name.

When Bash invokes an external command, the variable `$_' is set to the full path name of the command and passed to that command in its environment.

Exit Status

For the shell's purposes, a command which exits with a zero exit status has succeeded. A non-zero exit status indicates failure. This seemingly counter-intuitive scheme is used so there is one well-defined way to indicate success and a variety of ways to indicate various failure modes. When a command terminates on a fatal signal whose number is N, Bash uses the value 128+N as the exit status.

If a command is not found, the child process created to execute it returns a status of 127. If a command is found but is not executable, the return status is 126.

If a command fails because of an error during expansion or redirection, the exit status is greater than zero.

The exit status is used by the Bash conditional commandsand some of the list constructs.

All of the Bash builtins return an exit status of zero if they succeed and a non-zero status on failure, so they may be used by the conditional and list constructs. All builtins return an exit status of 2 to indicate incorrect usage.


When Bash is interactive, in the absence of any traps, it ignores SIGTERM (so that `kill 0' does not kill an interactive shell), and SIGINT is caught and handled (so that the wait builtin is interruptible). When Bash receives a SIGINT, it breaks out of any executing loops. In all cases, Bash ignores SIGQUIT. If job control is in effect, Bash ignores SIGTTIN, SIGTTOU, and SIGTSTP.

Commands started by Bash have signal handlers set to the values inherited by the shell from its parent. When job control is not in effect, asynchronous commands ignore SIGINT and SIGQUIT as well. Commands run as a result of command substitution ignore the keyboard-generated job control signals SIGTTIN, SIGTTOU, and SIGTSTP.

The shell exits by default upon receipt of a SIGHUP. Before exiting, an interactive shell resends the SIGHUP to all jobs, running or stopped. Stopped jobs are sent SIGCONT to ensure that they receive the SIGHUP. To prevent the shell from sending the SIGHUP signal to a particular job, it should be removed from the jobs table with the disown builtin or marked to not receive SIGHUP using disown -h.

If the huponexit shell option has been set with shopt, Bash sends a SIGHUP to all jobs when an interactive login shell exits.

When Bash receives a signal for which a trap has been set while waiting for a command to complete, the trap will not be executed until the command completes. When Bash is waiting for an asynchronous command via the wait builtin, the reception of a signal for which a trap has been set will cause the wait builtin to return immediately with an exit status greater than 128, immediately after which the trap is executed.

handbook/handbook/bash2.txt · Last modified: 2010/04/15 21:18 (external edit)